Unified lattice Boltzmann method for flow in multiscale porous media.

نویسندگان

  • Qinjun Kang
  • Dongxiao Zhang
  • Shiyi Chen
چکیده

In this paper, we develop a unified lattice Boltzmann method for flow in multiscale porous media. This model not only can simulate flow in porous systems of various length scales but also can simulate flow in porous systems where multiple length scales coexist. Simulations of unidirectional steady flow through homogeneous and heterogeneous porous media both recover Darcy's law when the effects of inertial forces and Brinkman correction may be negligible. Direct use of this model on the usual computational nodes, with zero resistance on void spaces and infinite resistance on solid walls, gives results that agree well with analytical solutions. Simulations performed on a fractured porous system show that the method presented here gives very good overall permeability values for the whole fractured system. A series of simulations is performed on a simplified fractured system. The results indicate that, when the ratio of the permeability of the rock matrix to the fracture permeability calculated by the cubic law is less than 10(-4), the effects of the rock matrix flow are negligible, and the discrete-fracture models that ignore such flow are plausible. When the ratio is larger than 10(-4), the matrix flow has significant effects on the fractured system, and the assumption that the matrix is impermeable does not hold. Therefore, the use of the cubic law to calculate the fracture permeability may cause a significant error. It is also indicated that the larger the ratio of the width of the porous matrix to that of the fracture, the more significant is the error caused by using the cubic law.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Lattice Boltzmann Method to Investigate the Effects of Porous Media on Heat Transfer from Solid Block inside a Channel

A numerical investigation of forced convection in a channel with hot solid block inside a square porous block mounted on a bottom wall was carried out. The lattice Boltzmann method was applied for numerical simulations. The fluid flow in the porous media was simulated by Brinkman-Forchheimer model. The effects of parameters such as porosity and thermal conductivity ratio over flow pattern and t...

متن کامل

Investigation of pore-scale random porous media using lattice boltzmann method

The permeability and tortuosity of pore-scale two and three-dimensional random porous media were calculated using the Lattice Boltzmann method (LBM). Effects of geometrical parameters of medium on permeability and tortuosity were investigated as well. Two major models of random porous media were reconstructed by computerized tomography method: Randomly distributed rectangular obstacles in a uni...

متن کامل

Gas-liquid Relative Permeability Estimation in 2D Porous Media by Lattice Boltzmann Method: Low Viscosity Ratio 2D LBM Relative Permeability

This work is a primary achievement in studying the CO2 and N2–oil systems. To predict gas-liquid relative permeability curves, a Shan-Chen type multicomponent multiphase lattice Boltzmann model for two-phase flow through 2D porous media is developed. Periodic and bounce back boundary conditions are applied to the model with the Guo scheme for the external body force (i.e.,...

متن کامل

Lattice Boltzmann modeling of two component gas diffusion in solid oxide fuel cell

In recent years, the need for high efficiency and low emission power generation systems has made much attention to the use of fuel cell technology. The solid oxide fuel cells due to their high operating temperature (800 ℃ -1000 ℃) are suitable for power generation systems.Two-component gas flow (H2 and H2O) in the porous media of solid oxide fuel cell’s anode have been modeled via lattice Boltz...

متن کامل

Implementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems

In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 66 5 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2002